首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112308篇
  免费   7628篇
  国内免费   5769篇
电工技术   19718篇
技术理论   5篇
综合类   9873篇
化学工业   13234篇
金属工艺   6075篇
机械仪表   3884篇
建筑科学   4648篇
矿业工程   1659篇
能源动力   3579篇
轻工业   5979篇
水利工程   2202篇
石油天然气   4215篇
武器工业   749篇
无线电   10971篇
一般工业技术   14855篇
冶金工业   2898篇
原子能技术   2448篇
自动化技术   18713篇
  2024年   102篇
  2023年   591篇
  2022年   937篇
  2021年   1288篇
  2020年   1805篇
  2019年   1583篇
  2018年   1696篇
  2017年   1963篇
  2016年   2527篇
  2015年   3409篇
  2014年   5617篇
  2013年   6077篇
  2012年   6021篇
  2011年   6806篇
  2010年   5423篇
  2009年   6909篇
  2008年   6878篇
  2007年   7406篇
  2006年   6788篇
  2005年   5521篇
  2004年   4624篇
  2003年   4432篇
  2002年   4303篇
  2001年   3337篇
  2000年   3582篇
  1999年   3264篇
  1998年   2675篇
  1997年   2506篇
  1996年   2664篇
  1995年   2771篇
  1994年   2510篇
  1993年   1562篇
  1992年   1549篇
  1991年   1064篇
  1990年   788篇
  1989年   691篇
  1988年   657篇
  1987年   385篇
  1986年   233篇
  1985年   377篇
  1984年   422篇
  1983年   437篇
  1982年   332篇
  1981年   407篇
  1980年   270篇
  1979年   115篇
  1978年   113篇
  1977年   69篇
  1976年   41篇
  1975年   56篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Surface-interface reaction between the electrode and electrolyte plays a key role in lithium-ion storage properties, especially for high voltage cathode such as LiCoPO4 and Ni-riched cathode. Generally, surface modification is an effective method to improve the electrochemical performance of electrode materials. Herein, in order to revise the LiCoPO4 cathode with desirable properties, uniform AlF3-modified LiCoPO4 (LiCoPO4@AlF3) cathode materials in nano-sized distribution are synthesized. XRD result indicates that there is no structural transformation observed after AlF3 coating. TEM characterization and XPS analysis reveal that the surface of LiCoPO4 particle is coated by a nano-sized uniform AlF3 layer. Further, the electrochemical results indicate that AlF3 layer significantly improves the cycling and rate performances of LiCoPO4 cathode within the voltage range of 3.0–5.0 V. After a series of optimization, 4 mol% AlF3-coated LiCoPO4 material exhibits the best properties including an initial discharge capacity of 159 mA h g?1 at 0.1 C with 91% capacity retention after 50 cycles, especially a discharge capacity of 90 mA h g?1 can be obtained at 1 C rate. CV curves indicate that the polarization of cathode is reduced by AlF3 layer and EIS curves reveal that AlF3 layer relieves the increase of resistance to facilitate Li-ion transfer at the interface between electrode and electrolyte during the cycling process. The enhanced electrochemical performances are attributed to that the AlF3 layer can stabilize the interface between the cathode and electrolyte, form steady SEI film and suppress the electrolyte continuous decomposition at 5 V high voltages. This feasible strategy and novel characteristics of LiCoPO4@AlF3 could promise the prospective applications in the stat-art of special lithium-ion battery with high energy and/or power density.  相似文献   
92.
Successful fabrication of glass-based hybrid nanocomposites (GHNCs) incorporating Ag, core-shell CdSe/CdS and CdSxSe1?x nanoparticles (NPs) is herein reported. Both metallic (Ag) and semiconductor (CdSe/CdS) NPs were pre-synthesized, suspended in colloids and added into the sol-gel reaction medium which was used to fabricate the GHNCs. During fabrication of the nanocomposites a fraction (20–60%) of core-shell CdSe/CdS NPs was alloyed into CdSxSe1?x (0.20 < x < 0.35) NPs without changing morphology. Modulation of in situ alloying is possible via the relative content of organics added into the sol-gel protocol. Within colloids Ag (core-shell CdSe/CdS) NPs presented average diameter and polydispersity index of 49.5 nm (4.2 nm) and 0.41 (0.21), respectively. On the other hand, the Ag (core-shell CdSe/CdS) NPs’ average diameter and polydispersity index assessed from the GHNCs were respectively 51.5 nm (4.1 nm) and 0.43 (0.25), revealing negligible aggregation of the nanophases within the glass template. The new GHNCs herein introduced presented two independent excitonic transitions associated to homogenously dispersed semiconductor NPs, peaking around 420 nm (core-shell CdSe/CdS) and 650 nm (CdSxSe1?x) and matching the plasmonic resonance (Ag NPs) in the 400–500 nm range. We envisage that the new GHNCs represent very promising candidates for superior light manipulation while illuminated with multiple laser beams in quantum interference-based devices.  相似文献   
93.
A morphotropic phase boundary (MPB) between rhombohedral (R) and tetragonal (T) phases was identified in a few (0.9-x)NaNbO3-0.1BaTiO3-xABO3 (x?=?0–0.05) lead-free systems. Critical roles of R-phase inducers were specially evaluated in terms of phase boundary position, microstructure and piezoelectric responses. The results indicate not only the tolerance factor of the ABO3 additive but also its ferroelectricity and corresponding volume change would influence the formation of phase boundary and further determine dielectric and ferroelectric responses. The piezoelectric coefficient d33 of MPB compositions was compared with theoretically-calculated d33-cal according to d33?=?2Pr·ε33·Q33, demonstrating that the piezoelectric response of these systems should be determined by combined effects of the phase coexistence, nano-scale domains and particularly enhanced dielectric responses. The largest d33 ~305 pC/N, the highest ε33To ~2815 and the lowest Pr ~14.7 μC/cm2 were achieved in the MPB composition with 3.75% SrZrO3. These experimental results provide a valuable reference for designing new NaNbO3-based lead-free piezoelectric materials.  相似文献   
94.
95.
96.
Boron is considered to influence the performance of several metabolic enzymes and boron deficiency is associated with impaired growth and abnormal bone development. As such, boron is a beneficial bioactive element for animals and humans. It is also well known that boron stimulates wound healing and improves bone health. The addition of boron in different proportions to bioactive glasses has significant effects on glass structure, glass processing parameters, biodegradability, biocompatibility, bioactivity and cytotoxicity. Different compositions of bioactive glasses (BGs) containing boron, including boron-doped, borosilicate and borate glasses, are being investigated for bone and soft tissue engineering under the premise that these BGs are suitable carriers of boron, indicating controlled release of B species in the biological environment. This paper reviews up to date research and applications of borate, borosilicate, and boron doped silicate and phosphate BGs focussing on their physical, structural, degradation and biological properties for hard and soft tissue regeneration.  相似文献   
97.
Different deformation rates of Nd,Y-codoped CaF2 transparent ceramics were prepared by ceramization of single crystals. The deformation rate effects on the crystallization behaviors, microstructures, mechanical properties, and optical performances were investigated for the first time. The results indicate that the comprehensive performances of Nd,Y-codoped CaF2 ceramic (△a?=?62%) are the most optimal compared with other ceramics having different deformation rates (△a?=?34%, 40%, 50%, and 75%). In further investigations of the optical properties, the Nd,Y-codoped CaF2 ceramic (△a?=?62%) sample exhibited a high transparency (Ta?>?91%, 3-mm thick,250?~?1200?nm), low light scattering, superior fracture toughness (K1c?~?0.71?MPa·m1/2), strong fluorescence emission, long lifetime (τ?=?348.72?μs), and broad FWHM (29.2?nm), promising a good candidate for high-power laser material.  相似文献   
98.
(1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 ((1-x)PZN-xPT in short) is one of the most important piezoelectric materials. In this work, we extensively investigated (1-x)PZN-xPT (x = 0.07–0.11) ferroelectric single crystals using in-situ synchrotron μXRD, complemented by TEM and PFM, to correlate microstructures with phase transitions. The results reveal that (i) at 25 °C, the equilibrium state of (1-x)PZN-xPT is a metastable orthorhombic phase for x = 0.07 and 0.08, while it shows coexistence of orthorhombic and tetragonal phases for x = 0.09 and x = 0.11, with all ferroelectric phases accompanied by ferroelastic domains; (ii) upon heating, the phase transformation in x = 0.07 is Orthorhombic  Monoclinic  Tetragonal  Cubic. The coexistence of ferroelectric tetragonal and paraelectric cubic phases was in-situ observed in x = 0.08 above Curie temperature (TC), and (iii) phase transition can be explained by the evolution of the ferroelectric and ferroelastic domains. These results disclose that (1-x)PZN-xPT are in an unstable regime, which is possible factor for its anomalous dielectric response and high piezoelectric coefficient.  相似文献   
99.
In this study, we present an effective strategy to enhance the energy storage properties of Ba0.4Sr0.6TiO3 (BST) lead-free ceramics by the addition of Bi2O3-B2O3-SiO2 (BBS) glass, which were prepared by the conventional solid state sintering method. The phase structure, microstructure and energy storage properties were investigated in detail. It can be found that the Ba0.4Sr0.6TiO3-x wt%(Bi2O3-B2O3-SiO2) (BST- x wt%BBS, 0  x  12) ceramics possess large maximum polarization (Pmax), low remanent polarization (Pr) and slim polarization electric field (P-E) hysteresis loops. The breakdown strength (BDS), recoverable energy storage density (Wrec) and energy storage efficiency (η) are enhanced obviously with the addition of BBS glass. The BST-9 wt%BBS ceramic is found to exhibit excellent energy storage properties with a Wrec of 1.98 J/cm3 and a η of 90.57% at 279 kV/cm. These results indicate that the BST-x wt%BBS ceramics might be good candidates for high energy storage applications.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号